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Abstract—An analytical solution of a three-dimensional heat conduction problem is obtained for a mul-

tilayer thin coating—substrate assembly affected by both stationary and moving laser beams. For both cases

analytical expressions for the temperature distributions in an assembly are obtained under the assumption

that the ratio of coating thickness to laser beam radius is small. The obtained expressions can be employed
for analysis of thermal reliability of multilayer assemblies used in microelectronics.

INTRODUCTION

The problem of thermal reliability of microelectronic
devices has become important during the last decade
due to trends towards large scale integration [1]. Mod-
ern electronic devices operate at a high power level.
Thus a single chip which represents a multilayer thin
coating—substrate assembly dissipates a heat flux of
0.1-1 MW m~? [2]. Since the components of this
assembly are made of different materials, such as cer-
amics, metal, semiconductors, an unavoidable mis-
match of the thermal expansion coefficients in the
heat generation can cause high thermal stresses and
mechanical failure of the coating which make it unable
to perform its function. Obviously the reliable oper-
ation of electronic equipment can be ensured by timely
and precise detection of failure and its mode.

Recently a number of experimental methods that
use pulsed laser irradiation of an assembly [3-5], such
as photothermal, thermal imaging, thermoacoustic,
etc., were employed for detection of failure modes and
in particular for testing the integrity of bonding. These
methods are based on the fact that the presence of
subsurface defects affects the temperature distribution
at the surface of an assembly irradiated by the focused
laser beam. By comparing the measured temperature
distribution and the predicted one on the basis of
the solution of the heat conduction problem one can
evaluate the performance of an assembly. Thus a solu-
tion of the heat conduction problem for a multilayer
assembly is also of great interest in the problem of
thermal reliability.

In the present investigation we derive an analytical
solution of the heat conduction problem in a mul-
tilayer assembly based on the expansion of tem-
perature distribution in a small parameter which is
equal to the ratio of coating thickness to the laser
beam radius. The advantage of this approach is that
itleads to simple and explicit expressions for the three-
dimensional temperature distribution which can be

easily computed and are convenient for practical use.
In particular they can be employed for determining
the thermal stresses caused by the local laser heating
of a multilayer assembly.

THERMAL ANALYSIS

Consider a heat conduction problem for a mul-
tilayer thin coating deposited on a substrate heated
by laser radiation incident in the normal direction to
the coating surface (Fig. 1). Determine the tem-
perature distribution T(x,y, z, t) in a multilayer slab
(—o<x<w,0<y<w,—d<z<A) from the
solution of the unsteady three-dimensional heat con-
duction equation with appropriate initial, boundary
and continuity conditions for temperature and heat
fluxes. Assume that laser radiation is absorbed com-
pletely at the surface of an assembly:
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Applying cosine Fourier and Laplace transforms to
equation (1) we obtain for a substrate
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NOMENCLATURE
¢ specific heat v dimensionless velocity
q’ substrate thickness x, y,z geometrical coordinates of the point
d dimensionless substrate thickness in the assembly
erf(x) error function %, 7,z dimensionless coordinates.
Fo Fourier number
H(x) Heaviside’s.function Greek symbols
1y laser beam 1pten51ty . B.. B, the Fourier transform parameters
Jo(x) Bessel function of the first kind of zero with respect to x and y
order . A coating thickness
k thermal conductnflty . A thermal conductivity
n pumbcr‘of layefs in the coating 0 density
p integration variable T dimensionless value of ¢
q heat flux absorbed by assembly x reflectivity.
"y radius of the Gaussian laser beam
s the Laplace transform parameter with )
respect to time Subscripts
' time 0 substrate .
T space-time distribution of the ! layer of the coating
temperature in the assembly
T Laplace-Fourier transforms of the Superscripts
temperature T +, — upper and lower surfaces of layer in
v velocity of scanning of a laser beam the coating respectively
z
- s
T, = Mexp (— [k— +ﬂ§+/3§z)
0
laser beam
s
+Nexp ( /k— +ﬂ§+ﬁ§z> ®)
0
where M and N are integration constants which can
-y be determined from the boundary conditions.
coating Let us consider a limiting case of a thin coating and
-d large Fourier number Fo(A,) = k;t/A? » 1 which is of
substrate particular interest in practice. First of all we obtain
~ the solution of a heat conduction problem for a coat-
X ing which consists of one layer (n = 1). Equation (1)
Fig. 1. Scheme of the multilayer assembly. yields
42T, s s o2\
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Integrating (7) over z we obtain
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0

x Jw To(x,py,z,0)exp (—st)dz. (5)

0

The solution of equation (4) is

The dependence of temperature on the axial coor-
dinate z can be represented in the following form:

_ _ (AT~ 1 /d*T,\\"
T, =(T) +<d—z') Z+§<d22‘> 2

or taking into account equation (7) one can obtain
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Using the latter expression for determination of the
integral in the right-hand side of (8) one finds that
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In pqnahnn (10} the term
be neglected because of the above assumptlons of
small layer thickness and large Fourier numbers. In
the same approximation one can obtain from (9) the

following relation :
_ - dT\~
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Combining the boundary conditions (2) at the inter-
face z = 0 with expression (6) yields:
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Substituting the latter expressions into (10), (11) we
arrive at the following expressions :
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Repeating the same procedure for two, three and
more layer assemblies one can determine the following
general expressions for (7,)* and (d7,/dz)* in a mul-
tilayer coating composed of n layers with different
thermophysical characteristics :
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+ .+, M+N) (14)
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Let us determine integration constants M and N tak-
ing into account (2), (3), (14):

M = Nexp <—2\/£—+—ﬂ§:ﬂ/§d>
a@ m(_M+N)+(bn+cns)(M+N)

4., B,)
o

n

={1-x (16)
Solving equations (16) and substituting the deter-
mined values of M, N into (6) we obtain the following
expression for the temperature distribution :

1
a0y an

To(ﬁx’ ﬁy’ Z, S) =

where

go(ﬂx,ﬁy,z,s) = COSh( ,ki +ﬂ§+ﬁ§(d+z))
xI: \/k +ﬁx+ﬁysmh<\/£-+ﬂﬁ+ﬁfd>
+(b,,+c,,s)cosh( /ki+ﬂz+ﬁ§d)]”. (18)

In order to determine the inverse Laplace transform
of (18) we employ a decomposition theorem (see, e.g.
[6]) whereby the denominator of §, is equated to 0:
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To solve this equation we introduce a new variable u
instead of s defined to the following relation

i /ki+ﬂ§+ﬂ§d=u i=./—1
[}

Substitution of (20) into (19) after some algebra
yields the characteristic equation for g,

(20)

ol Gl = €1 —E2li7, 1)

where

d . . = !
& =&:(ﬁx+ﬁy Z <1—*>1;A1

z—~A

It should be noted that the characteristic equation
(21) is obtained from the solution of the heat con-
duction problem with boundary conditions of the
second kind. The particular form of this equation for
g, = 0 and ¢, = 0 was obtained previously for bound-
ary conditions of the second and third kinds [6, 7].
Thus the characteristic equation derived above gen-
eralizes the known characteristic equations.

Equation (21) is a transcendental and therefore it
is not feasible to obtain an exact analytical solution.
However, the following approximate analytical
expression for evaluation of roots y,, can be used :

g 172
o (tas) o

Ay =

_ & é
b =Mt v el 2m+ (1e)
(22)
where
& _ 1+tanh (2e,) _
s—1+82 o= [ +tanh z,) m=1,2,3,....

Evaluation of roots u,, from expression (22) gives a
satisfactory fit with the numerical solution of equation
(21) for all values of ¢, and &, with relative error less
than 3%. However, for values ¢,, &, < 0.2, which are
characteristic for thin coatings, the relative error does
not exceed 1.5%.

Taking into account equation (21) and applying the
decomposition theorem [8] for the calculation of the
inverse Laplace transform and formula of the inverse
Fourier transform, we determine from (17) the tem-
perature distribution in a substrate

- 2k &
Bo(Bus Byo2) = 2 Y, Ou(2)

X eXp { [’;'" B+ ]ko } 23)

where
1
®, () = — o8 Uy (1+2/d) .
(51D f4,,, COS Ly + ) [ (fn COS ) + 285 COS Ly

@49

T. ELPERIN and G. RUDIN

The inverse cosine Fourier transform of ,, is

0

Oo(x,p,2,1) = J

0

Joo go(ﬁxr ﬂya 2z, t)

x cos . cos B,df.dp,.

The dependence of the roots y,, on parameters §,, 8,
given by expression (22) is relatively involved and it
is not feasible to integrate (25) analytically.

Consider two special cases of temperature dis-
tribution within a multilayer coating-substrate
assembly for which one can obtain convenient for-
mulae for practical use.

25

1. The <case of large Fourier numbers
Fo(r,) = kyt/r} > 1. The analysis of expressions (23)
and (25) shows that integration in the vicinity of the
point §, = B, = 0 constitutes the main contribution
to the value of integral (25). Therefore the expression
(B2+p2) in (15) and (22) can be equated to 0. Then

from (23) we obtain
X2+ P
4kt

j'n
2dgid

x ZCD (2) exp< S’f) (26)

Oy (x,y,2,8) =

Employing (26) we can obtain a temperature dis-
tribution within a multilayer slab caused by the Gaus-
sian laser beam of intensity ¢ moving with a constant
velocity v along the axis OY :

x2+(y—vt)2} @

q=10exp{— 3

Iy

Taking into account the boundary condition at
y = 0 the temperature field can be represented in the
form
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Substituting (26) in (28) after some algebra we have
for the temperature field in a substrate
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Fig. 2. Temperature profiles at a surface of assembly vs
coordinate .

where

F(y,10) = exp <_. [_}ﬂc:ro_)]z>

1+41,
514y _
X |:1+erf (y_—_—+ Vo (c TO))il (30)
2/ 1o (14+474)
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The temperature field at the surface of the assembly
z = A can be determined from (13) and (29) and has
a form similar to (29) but with substitution &,, instead
of @, defined by (24):

_ COS Uy, — (an/d)“m sin HUm
- (Sin y’m COos ,um + ”m)/(ium Ccos ,um) + 282 cos Hm '

@31

Figure 2 shows the temperature profiles at the surface
(x = 0,z = 0) of an assembly obtained from (29) and
(31) for different values of time t = 1 s (curve 1), 3 s
(2) and 5s (3) for v=10" m s~'. The assembly
consists of substrate (alumina, d = 2000y) and two
layer coating (Pb, A, = 75u and SiO,, A, = 10y)
which is irradiated by a laser beam of r, = 700u. The
maximum value of temperature T, increases as the
distance between the laser beam and the edge of a slab
¥ = 0 increases and tends to some limiting value T,
depending on the velocity of scanning v. Evaluation
of the temperature field for different values of v reveals
that the dependence T, on v is weaker than the known
one T, /\ﬂ for the moving point heat source (r, —
0).

2. The stationary (v = 0) laser beam is far from
the edge of slab y = 0 and therefore the temperature
distribution is axially symmetric. Employing the
cosine Fourier transform of the function g at v=10
and substituting expressions (23) and (27) in (17) after
some algebra we obtain

m
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where p = /% + ;. The temperature distribution at
the surface of assembly is also expressed by (32) but
with the function ®,, instead of @,,(z).

CONCLUSIONS

Expressions (29) and (32) are obtained for deter-
mination of the three-dimensional temperature dis-
tributions in a multilayer assembly irradiated by both
stationary and moving laser beams. These expressions
are represented in a closed analytical form and include
only integration and summation. It should be noted
that expression (29) can be employed also for deter-
mination of the temperature distribution in a region
adjacent to the edge (y = 0) of a slab. This region is
most prone to some modes of failures and therefore
the thermal reliability testing of multilayer coating—
substrate assemblies near the edges is a problem of
great importance in microelectronics.
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