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Abstract--An analytical solution of a three-dimensional heat conduction problem is obtained for a mul- 
tilayer thin coating-substrate assembly affected by both stationary and moving laser beams. For both cases 
analytical expressions for the temperature distributions in an assembly are obtained under the assumption 
that the ratio of coating thickness to laser beam radius is small, The obtained expressions can be employed 

for analysis of thermal reliability of multilayer assemblies used in microelectronics. 

INTRODUCTION 

The problem of thermal reliability of microelectronic 
devices has become important during the last decade 
due to trends towards large scale integration [1]. Mod- 
ern electronic devices operate at a high power level. 
Thus a single chip which represents a multilayer thin 
coating-substrate assembly dissipates a heat flux of 
0.1-1 MW m -2 [2]. Since the components of this 
assembly are made of different materials, such as cer- 
amics, metal, semiconductors, an unavoidable mis- 
match of the thermal expansion coefficients in the 
heat generation can cause high thermal stresses and 
mechanical failure: of the coating which make it unable 
to perform its function. Obviously the reliable oper- 
ation of electronic equipment can be ensured by timely 
and precise detection of failure and its mode. 

Recently a number of experimental methods that 
use pulsed laser irradiation of an assembly [3-5], such 
as photothermal, thermal imaging, thermoacoustic, 
etc., were employed for detection of failure modes and 
in particular for testing the integrity of bonding. These 
methods are based on the fact that the presence of 
subsurface defects affects the temperature distribution 
at the surface of an assembly irradiated by the focused 
laser beam. By comparing the measured temperature 
distribution and the predicted one on the basis of 
the solution of the heat conduction problem one can 
evaluate the performance of an assembly. Thus a solu- 
tion of the heat conduction problem for a multilayer 
assembly is also of great interest in the problem of 
thermal reliability. 

In the present investigation we derive an analytical 
solution of the heat conduction problem in a mul- 
tilayer assembly based on the expansion of tem- 
perature distribution in a small parameter which is 
equal to the ratio of coating thickness to the laser 
beam radius. The advantage of this approach is that 
it leads to simple and explicit expressions for the three- 
dimensional temperature distribution which can be 

easily computed and are convenient for practical use. 
In particular they can be employed for determining 
the thermal stresses caused by the local laser heating 
of a multilayer assembly. 

THERMAL ANALYSIS 

Consider a heat conduction problem for a mul- 
tilayer thin coating deposited on a substrate heated 
by laser radiation incident in the normal direction to 
the coating surface (Fig. 1). Determine the tem- 
perature distribution T(x, y, z, t) in a multilayer slab 
( - o o < x < o o , O < ~ y < o o , - d < z < A )  from the 
solution of the unsteady three-dimensional heat con- 
duction equation with appropriate initial, boundary 
and continuity conditions for temperature and heat 
fluxes. Assume that laser radiation is absorbed com- 
pletely at the surface of an assembly : 

~Ti /OZTi OZTi ~2Ti~ 

OTiy=o,o ° OTi Tol,=o = Til,=o = ~ - cSx . . . . . . .  

_Oro[ 
- O z G _ ~ = °  (l) 

2k ~-zOTk = 2k+l O~kZ+ l , Tk = Tk+I 

k 
at the interface z = ~ Ai 

/=1 

2. " = ( 1 - z ) q  
dz 

(2) 

at the sur~ce z = A = ~ A. 
i = l  

(3) 

Applying cosine Fourier and Laplace transforms to 
equation (1) we obtain for a substrate 
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NOMENCLATURE 

specific heat 
substrate thickness x, y, z 
dimensionless substrate thickness 

error function ~, )~, 2 
Fourier  number  
Heaviside's function 
laser beam intensity 
Bessel function of the first kind of zero 
order A 
thermal conductivity 2 
number  of layers in the coating p 
integration variable r 
heat flux absorbed by assembly Z 
radius of the Gaussian laser beam 
the Laplace transform parameter with 
respect to time 
time 
space-time distribution of the 
temperature in the assembly 
Laplace-Fourier  transforms of the 
temperature T 
velocity of scanning of a laser beam 

dimensionless velocity 
geometrical coordinates of the point 

in the assembly 
dimensionless coordinates. 

Greek symbols 
fix, fly the Fourier transform parameters 

with respect to x and y 
coating thickness 
thermal conductivity 
density 
dimensionless value of t 
reflectivity. 

Subscripts 
0 substrate 
i layer of the coating 

Superscripts 
+ ,  - upper and lower surfaces of layer in 

the coating respectively 

laser beam 

C "X 
X 

coating 

substmt¢ 

Fig. 1. Scheme of the multilayer assembly. 

dz 2 = 2 2 To (4) 

where 

L f: To (fix, fly, z, s) = cos (flxx) dx cos (flyy) dy 

x f ;  To (x,y, z, t) exp (--st)  dt. (5) 

The solution of equation (4) is 

 exp (- 

where M and N are integration constants which can 
be determined from the boundary  conditions. 

Let us consider a limiting case of a thin coating and 
large Fourier  number  Fo(Ai) = kit/A~ >> 1 which is of 
particular interest in practice. First of  all we obtain 
the solution of a heat conduction problem for a coat- 
ing which consists of one layer (n = 1). Equation (1) 
yields 

dz 2 _ 2 2 7~1 (7) 

Integrating (7) over z we obtain 

- 

d z )  7", dz.  

(8) 

The dependence of temperature on the axial coor- 
dinate z can be represented in the following form : 

[dTl'~- 1 [ d 2 T l \  - 2 

or taking into account equation (7) one can obtain 
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Using the latter expression for determination of the 
integral in the right-hand side of (8) one finds that 

In equation (10) the terms of order A: and sA:/k, can 
” 10 

be neglected because of the above assumptions of 
x, = c 12 Ai 

i=l n 

small layer thickness and large Fourier numbers. In 
the same approximation one can obtain from (9) the 
following relation : 

CT’,)+ = 11 +@:+/I;)A:](r,)- + -A,. +&A _ A H(n-3) 
1, “‘” 

(11) Let ,us determine integration constants A4 and N tak- 

Combining the boundary conditions (2) at the inter- 
ing into account (2), (3), (14) : 

face z = 0 with expression (6) yields : 

(F,)- = M+N 

M= Nexp(-2/Gd) 

(12) “““-‘;‘-““‘“;“I:I (16) 

Substituting the latter expressions into (lo), (11) we = (l-x) 
n 

arrive at the following expressions : 
Solving equations (16) and substituting the deter- 
mined values of M, N into (6) we obtain the following 
expression for the temperature distribution : 

+ 11 +:(B: +B,')A:l(M+ N) l-x_- ~Oo(BX> By, z, s) = __ (17) 
dF, + 

(-) 

1 &I 
n 

dz = 11 +f(BZ +B,‘Y:l where 

x$/G(-M+N) 8, (B,, By, z, 4 = cash (,/~V+z)) 
+ (; +8:+P;)W+N)A,. (13) 

x [a,, /Gsinh (,/Gd) 

Repeating the same procedure for two, three and 
more layer assemblies one can determine the following 
general expressions for (T,,) + and (dT,Jdz) + in a mul- 
tilayer coating composed of n layers with different 

+(h.+is)cosh(,/Gd)I’. (18) 

thermophysical characteristics : In order to determine the inverse Laplace transform 
of (18) we employ a decomposition theorem (see, e.g. 

(FJ’ = CI, i;+p:+p:(-M+N)+&(M+N) [6]) whereby the denominator of 8, is equated to 0 : 
0 

+(b,+c,s)(M+N) (14) 
+(h.+jr)cosh[,,/Gd] = 0. (19) 

where 
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To solve this equation we introduce a new variable # 
instead of s defined to the following relation 

2 1 -["flx~-~2yd=]A i = % ~  (20) 

Substitution of (20) into (19) after some algebra 
yields the characteristic equation for p,. 

~tmtg~m = / ; , - -g2# 2 (21) 

where 

d ( k0 \ 2i /;1 kl-  )2A, 

1 " ko 2i 

It should be noted that the characteristic equation 
(21) is obtained from the solution of the heat con- 
duction problem with boundary conditions of the 
second kind. The particular form of this equation for 
/;1 = 0 and/;2 = 0 was obtained previously for bound- 
ary conditions of the second and third kinds [6, 7]. 
Thus the characteristic equation derived above gen- 
eralizes the known characteristic equations. 

Equation (21) is a transcendental and therefore it 
is not feasible to obtain an exact analytical solution. 
However, the following approximate analytical 
expression for evaluation of roots Pm can be used : 

#m = m n +  mn 
mn+  (2/n)lel I 2m+ (1//;z) 

(22) 

where 

e I 1 + tanh (2/;2) 
/ ;=  6 -  m = 1 , 2 , 3  . . . . .  

1 +/;2 1 + tanh (e2) 

Evaluation of roots p,~ from expression (22) gives a 
satisfactory fit with the numerical solution of equation 
(21) for all values of el and e2 with relative error less 
than 3%. However, for values/;I, s2 ~< 0.2, which are 
characteristic for thin coatings, the relative error does 
not exceed 1.5%. 

Taking into account equation (21) and applying the 
decomposition theorem [8] for the calculation of the 
inverse Laplace transform and formula of the inverse 
Fourier transform, we determine from (17) the tem- 
perature distribution in a substrate 

2k0 ~, ~ . ,  
O0(flx, fly,Z, t) = ~ndm~=oqlmtZ) 

x exp +/ :+fi#]kotl (23) 
/. Ld J j 

where 

COS/.tm(1 q- 2'/d) 
~ ( z )  - 

(sin #m cos I.~m 71- ~ra)/(]~m COS #m) "q- 2e2 COS p,," 

(24) 

The inverse cosine Fourier transform of 00 is 

Oo (x, y, z, t) = Oo (/~, fly, z, t) 

x cos fix cos fly d/~x dfly. (25) 

The dependence of the roots ~m on parameters fix, fly 
given by expression (22) is relatively involved and it 
is not feasible to integrate (25) analytically. 

Consider two special cases of temperature dis- 
tribution within a multilayer coating-substrate 
assembly for which one can obtain convenient for- 
mulae for practical use. 

1. The case of large Fourier numbers 
FO(rb) = kot/r~ >> 1. The analysis of expressions (23) 
and (25) shows that integration in the vicinity of the 
point fix = fly = 0 constitutes the main contribution 
to the value of integral (25). Therefore the expression 
(fl2+fl~) in (15) and (22) can be equated to 0. Then 
from (23) we obtain 

Oo(x,y,z,t) ~ e x p (  x2+y2) 

x ~ ~m (z) exp -- p,. . 
0 

(26) 

Employing (26) we can obtain a temperature dis- 
tribution within a multilayer slab caused by the Gaus- 
sian laser beam of intensity q moving with a constant 
velocity v along the axis OY : 

x2-b(y--vt)2~ (27) 
q = I0 exp r-~ -J 

Taking into account the boundary condition at 
y = 0 the temperature field can be represented in the 
form 

To(x,y, z, t) - (1-901o dxo dyo dto 
2n 

( x~+(yo-Vto) 2] . . . .  
xexp 

l 
r~ ; t u ° t x - x ° ' y - y ° ' z ' t - t ° )  

+Oo(x--xo,y+yo,z,t--to)]. (28) 

Substituting (26) in (28) after some algebra we have 
for the temperature field in a substrate 

(1 -- Z)Iorb 
To(x,y,z, t) - 203 

( 2 r ° ) ]  (29) + F ( - - y ,  Zo)]X ~. Om(Z) exp --/~m~ d'co 
m=O 
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Fig. 2. Temperature profiles at a surface of assembly vs 
coordinate y. 

where 

F0~, z0) = exp ( 
\ 

kot 
"E = r 2 

1 + 4~0 } 

\ 2x/~-0 (1 + 4 r0 ) /d  

vr b d x y 
~7=:~-0 ~ / = - -  " ~ = - -  3 ~ = - - ' r a  rb rb 

(30) 

The temperature field at the surface of the assembly 
z = A can be determined from (13) and (29) and has 
a form similar to (29) but  with substitution ~m instead 
of ~m defined by (24) : 

,cos p,, - (ot,/d)p,, sin Pm 

I~)m - -  (sin Pm COS Pm 71- P m ) / ( P r n  COS Pro) "~ 2~2 cos Pro" 

(31) 

Figure 2 shows the temperature profiles at the surface 
(x = 0, z = 0) of an assembly obtained from (29) and 
(31) for different values of time t = 1 s (curve 1), 3 s 
(2) and 5 s (3) for v = 10 -3 m s-L The assembly 
consists of substrate (alumina, d = 2000p) and two 
layer coating (Pb, A~ = 75p and SiO2, A2 = 10p) 
which is irradiated by a laser beam of rb = 700#. The 
maximum value of temperature Tm increases as the 
distance between the laser beam and the edge of a slab 
y = 0 increases and tends to some limiting value Tq 
depending on the: velocity of scanning v. Evaluation 
of the temperature field for different values of v reveals 
that the dependence Tq on v is weaker than the known 
one Tqoc 1/x/~ for the moving point heat source (rb 
0). 

2. The stationary (v = 0) laser beam is far from 
the edge of slab y = 0 and therefore the temperature 
distribution is axially symmetric. Employing the 
cosine Fourier  transform of the function q at v = 0 
and substituting expressions (23) and (27) in (17) after 
some algebra we obtain 

To(x, y, z, t) = (1 .-Z) Ior~d t ~ 1 
Zn Jo an 

qbm(Z) #i _ exp F_ (n2 _i_ ' ~  ko tl'~ X 
d'~op2d2+p2~[ L \ " ~2- " ' a  / j ]  

x e x p ( - P 2 ~ ) J o ( p r ) p d p  (32) 

2 2 where p = ~ .  The temperature distribution at 
the surface of assembly is also expressed by (32) but 
with the function ~m instead of ~ ( z ) .  

CONCLUSIONS 

Expressions (29) and (32) are obtained for deter- 
minat ion of the three-dimensional temperature dis- 
tributions in a multilayer assembly irradiated by both 
stationary and moving laser beams. These expressions 
are represented in a closed analytical form and include 
only integration and summation. It should be noted 
that expression (29) can be employed also for deter- 
minat ion of the temperature distribution in a region 
adjacent to the edge (y = 0) of a slab. This region is 
most prone to some modes of failures and therefore 
the thermal reliability testing of multilayer coat ing- 
substrate assemblies near the edges is a problem of 
great importance in microelectronics. 
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